Amazing Attachments
Regular readers of this blog will know that we've shared many wonderful stories about the use of 3D printing in the field of medicine. The technology has quickly been adopted for everything from the growth of replacement organs to the creation of prosthetic limbs. The processes associated with 3D printing could become one of the most revolutionary advances in the history of modern medicine.
With all the advances made so far, perhaps the most pleasant surprise is that they're showing no signs of slowing. Thanks to this technology, ailments and disabilities previously thought to have no treatment could have possible cures. The following stories document the latest advances of medical 3D printing, and it's safe to say they won't be the last.
Homegrown Hearts
Scientists at the University of Florida recently made headlines when they revealed that they'd created a new gel-based 3D-printing process. Printed using this process, the final product is less likely to fall apart after printing is complete. The University had successfully printed complex shapes with a variety of materials, including living cells from human blood vessels and canine kidneys. Although this would seem to be the perfect prelude for the printing of replacement organs, the university's team was unable to keep the living cells alive within the gel. That's where Carnegie Mellon comes in.
Image via IFL Science.
Researchers at Carnegie Mellon have long been working on their own process for 3D-printing organs. They recently had a major breakthrough when they concluded that they could successfully print a working human heart. Using a chemical-based gel process of their own design, the researchers began printing arteries and veins.
The heart being an organ that is unable to repair itself when injured, the importance of the Carnegie process was not lost on its creators. Although printing a complete organ is still expensive and time-consuming, the idea that it may become a commonplace process isn't so far-fetched anymore.
Heavily Armed
The ability to procure a prosthetic limb isn't only a matter of restoring physical ability. Social stigmas associated with being an amputee must be overcome. Great strides have been made in making modern prosthetics as visually appealing as they are functional. Yet, as appealing as the new designs are, they still lack sensation, and may draw unwanted attention to the amputee. It has long been the goal of prosthetic designers to create a skin-like covering that would look as real as organic skin and provide a sense of touch to the wearer. Science has just moved one step closer to attaining these goals.
Image via Gizmodo.
Researchers at Stanford University, led by electrical engineer Benjamin Tee, have created a system they call DiTact (The Digital Tactical System). It uses a series of sensors in the prosthetic which sends signals back to the optical nerves in the brain, restoring a sense of touch to the amputee. What's more, the artificial skin is made from flexible material. The next step will be to recreate the look of organic flesh. This is, however, only a long-term goal for the Stanford team.
As inspiring as the above stories are, it's too soon to say that made-to-order organs will be readily available. But with 3D-printing technology being used to create everything from fire arms to human teeth, don't be surprised if printed replacements come sooner than you'd expect.